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The linewidth factor of the order parameter autocorrelation function for the mean field 
n-vector Ginzburg-Landau model is determined numerically for n > 2. This generalizes 
results for the single mode laser (n = 2) obtained in Part II [Nadler, W., Schulten, K.: 
Z. Phys. B - Condensed Matter]. 

The time-dependent mean field n-vector Ginzburg- 
Landau model for phase transitions, given by the 
Langevin equation. 

(o(t)=a~o(t)--cp(t)2q~(t)+~(t), (1) 

with qo(t)z=[~o(t)l 2, the fluctuating forces ~(t) being 
Gaussian with white spectrum 

(~i(t) ~j(t')) = 25i~ 5 ( t -  t'), (2) 

describes the fluctuations of an n-component order 
parameter ~o(t)=(~oi(t); i= I, ..., n). Equations (1) and 
(2) are the zero-dimensional version of the general 
time-dependent Ginzburg-Landau model [-1], and 
provide its leading order description (in a system size 
expansion) for dimension d > 4 [2]. For values of the 
control parameter a < 0 the equilibrium distribution 
of ~o is peaked around zero. For a > 0 this symmetry 
is broken, and the distribution of order parameters 
is peaked around nonzero values for I q~l. In this re- 
gime the dominant slow fluctuations of the order pa- 
rameter are angular fluctuations of the q~ for n > 1, 
whereas barrier crossing processes are the dominant 
slow fluctuations for n = 1. Apart from being a generic 
description of phase transitions, the above model has 
also some particular physical realizations for different 
values of n. For example, the case n = 1 also describes 
diffusion in a one-dimensional bistable potential, a 
model of interest in chemical reaction kinetics [3, 4]. 

* Contribution No. 7796 

The case n = 2 also describes the fluctuations of the 
field amplitude in the single mode laser [3, 4], whereas 
the case n = 4 describes those fluctuations in the polar- 
ization symmetric two-mode laser [5]. 

A quantity of particular interest for the above 
model is its autocorrelation function 

c (t) = ( ~  (t) �9 q, (0)) .  (3) 

The time scale of the relaxation of C(t) is given by 
its mean relaxation time 

09 

~= ~ d t  C(t)/C(O), (4) 
0 

or, equivalently, by the linewidth factor 

= c (0)/~. (5) 

Equation (4) gives rise to a single-exponential approx- 
imation 

C(t) ~ C(O) e-t/~ (6) 

for the correlation function (3), the mean relaxation 
time approximation. This approximation is, in a sense, 
the best single-exponential description of C(t), since 
it provides an interpolation between the correct short- 
time (high-frequency) behavior and the correct long- 
time (low-frequency) behavior [6, 7]. In Parts I and 
II [-6, 7] this approximation was determined for var- 
ious stochastic models exhibiting phase transition-like 
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instabilities, among them the cases n =  1 and n = 2  
of the above model. In this communication the results 
for the mean relaxation time r, or, equivalently, the 
linewidth factor ~, obtained in Parts I and II are gen- 
eralized to the case n > 2. This paper concludes the 
series of papers 1-6, 7] on applications of the mean 
relaxation time approximation. 

I will review briefly the previous work on the dy- 
namics of the above model. For  n =  1 Dekker and 
van Kampen 1-8] have determined numerically the 
lowest eigenvalues for the Fokker-Planck operator 
equivalent to the Langevin Eq. (1) and (2). Bernstein 
and Brown [9] have used an analytical variational 
approximation for the lowest eigenvalue, based on 
the supersymmetry of the Fokker-Planek equation. 
Note here that the mean relaxation time z is related 
to the (nonzero) eigenvalues - 2 .  of the Fokker- 
Planck operator via [6] 

z =  ~ c. 221, (7) 
n=l 

A description equivalent to the Langevin Eq. (1) 
and (2) is provided by the Fokker-Planck equation 

~ p  
(q~, t) = L (~p) P (~p, t) (9) 

for the probability distribution P(qJ, t), with the 
Fokker-Planck operator L(~o) given by 

L (e) = v , .  { v ,  + [ v ,  u (e)] }. (10) 

V. is the gradient with respect to q~, and the potential 
U(~o) is given by 

U(~o) =U( ( ]? ) :  --~tg( D1-  ̂21_N(/3--1 ~4, (11) 

with (p2= ]q}iz as before. The stationary distribution 
of (9) is the Boltzmann distribution 

where the c, are the (positive) expansion coefficients 
of the autocorrelation function C(t) in a spectral ex- 
pansion. The sum in (7) is often dominated by the 
contributions due to the lowest eigenvalue. For  the 
single-mode laser equivalent case, n=2, Risken [4, 
10] has determined the lowest eigenvalue of the 
Fokker-Planck operator numerically. Grossmann 
[11] has determined an analytical approximation for 
the linewidth factor based on a mode-coupling ap- 
proximation. For n=4, the polarization symmetric 
two-mode laser, Grossmann and Krauth 1-5] have de- 
termined an analytical approximation based on a sec- 
ond order continued fraction expansion. The case of 
general n was treated by Ziegler and Horner [12], 
employing a perturbation expansion approach. They 
derive selfconsistently an approximate expression for 
the linewidth factor e, using a partial summation of 
the perturbation expansion (corresponding to a ran- 
dom phase approximation) which is equivalent to an 
1/n expansion. I will compare particularly their ana- 
lytical result, which has the form 

1 (8) n- 

in my notation, with my calculations. I would like 
to note that for the case n =  4 the result of(8) is numer- 
ically almost indistinguishable from Grossmann and 
Krauth's [5] approximation. 

po(q0ocexp [-- U (q~)]. (12) 

Using the adjoint Fokker-Planck operator 

L + ( e ) =  { V , -  EV, u ( e ) ] } .  V,,  (13) 

the mean relaxation time can be written in terms of 
a matrix element of its inverse [6, 7], 

z = -- (~o EL + (~o)] - 1 q~)/(q~2), (14) 

where ( ) denotes the average with respect to Po(~O) 
and has the properties of an inner product on the 
space of functions. The identity C(0)= (go 2) was em- 
ployed in (14). 

For the case n =  1 it was shown in Part I, using 
results of [13], that the matrix element in (14) can 
be determined analytically in terms of an integral ex- 
pression. This result is reproduced, for completeness, 
in the Appendix of the present paper. In order to 
determine the matrix element in (14) for n > 1 an auxil- 
iary vector function/t_ 1 (q~) is defined through 

1 (q,)= - EL+ - ,  (15) 

P-1 (q~) is, in effect, the right hand side function in 
the scalar product that contributes to the matrix ele- 
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ment. This auxiliary function can be determined as 
the solution of the equation 

L+ (q@/~-1 (q~) = - ~o (16) 

with reflective boundary conditions [13, 14]. In order 
to solve (16) I make the ansatz 

i 
\e.tel 

(17) 

This ansatz leads to the one-dimensional equation 

for the radial part #_ 1 (~0). The radial part L~-((p) of 
the adjoint Fokker-Planck operator can be written 
a s  

1 d 
L~- (q)) = (P "-llpo ((P) ddq) (P"- po (q~) d_(p" (19) 

Equation (18) has to be supplemented with reflective 
boundary conditions for q~=0 and ~o~o~, see [13, 
14]. The differential equation (18) can be solved very 
easily numerically by discretizing the one-dimensional 
state space for q~, employing the methods of [14]. 
In this discretization scheme the singular nature of 
the reactive term oc l/q) 2 gives no problems since the 
singularity lies on the (lower) boundary of the state 
space. The resulting linear equation is of tridiagonal 
form and can, therefore, be solved directly using the  
Gaussian elimination scheme [15]. In an actual calcu- 
lation one has to introduce an upper limit for the 
state space, and the independence of the numerical 
results from this upper limit, as well as from the actual 
value of the discretization length, has to be checked. 
The matrix element is finally determined from the 
auxiliary function #_ 1 (~0) through 

co 

-<~o[L+(~o)]=lqo>= ~ #_l(q0)po(cp)q~"d~o, 
0 

(20) 

where po(qO) is considered to be normalized so that 
co 

Po(q ~ (p"- i dcp = 1. 
0 

The case n = 2 was analyzed using the above algo- 
rithm already in Part II [7], and the reader is referred 
to that reference. For the cases n = 3, n = 4, and n = 10, 
the results for the linewidth factor, (5), are shown in 
Fig. 1. The presented data are the first numerically 
exact results for the linewidth factor for n > 2. ~ inter- 
polates in a sigmoidal curve between c~ = n for a <0, 
and c~ = n -  1 for a >> 0. This corresponds to the "freez- 
ing out"  of the radial degree of freedom by the phase 
transition. In Fig. 1 the exact results are also com- 
pared with the approximation of Ziegler and Homer,  
(8). As it is to be expected from the derivation of 
(8), an 1/n expansion, the approximation becomes in- 
creasingly better for increasing values of n. For n = 4 
the maximal relative error of C~ZH is < 1%, and be- 
comes about 10 .3 for n =  10. 

According to (7) the linewidth factor can be given 
alternatively by an expansion in the eigenvalues of 
the Fokker-Planck operator. As was demonstrated 
in Part II, for n = 2 the linewidth factor is dominated 
by the contribution of the lowest nonzero eigenvalue, 
but in the transition regime and for a > 0 other eigen- 
values also contribute. A relatively simple way to 
evaluate qualitatively the contribution of higher ei- 
genvalues is the long-time relaxation time 

co 

dt tC(t)/C(O) 
z ' -  o < e [  L+ (~o1]-2 ~o> 

= <e [L+ (q~)]_ lq~). ( 2 ] )  co 

t dt C(t)/C(O) 
0 

For a single-exponential behavior of C(t) the relaxa- 
tion times r and -c' are equal, whereas they will differ 
in case C(t) shows contributions from several eigen- 
values. Note that ~ '>z  holds. ~' is easily calculated 
from the auxiliary function #_ 1 (q)) using (20) and 

((p [L + (~o)] - 2 ~o) = ; [#_1 (~o)] 2 Po (q0) q)"- i d qo. (22) 
0 

In Fig. 2 the ratio z/z' is shown for various values 
of n. Although small (<3%),  the deviation of C(t) 
from a single-exponential behavior is strongest 
around a = 3. Figure 2 also demonstrates that for the 
increasing n the relaxation of C(t)is increasingly dom- 
inated by one single eigenvalue. 

To summarize, I have presented here the first nu- 
merically exact results for the linewidth factor in the 
time-dependent mean field n-vector model for n >2. 
The results show that the approximation b y  Ziegler 
and Homer  [12], Eq. (8), can be employed with suffi- 
cient accuracy ( <  1% error) for n >  3. 
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Fig. la-c.  Linewidth factor c~ vs. control parameter  a for (top) n =3,  
(middle) n = 4 ,  and (bottom) n =  10; (solid line) is our result from 
a numerical solution of (19) and (20); (dashed) is the result of Ziegler 
and Homer ' s  analytical approximation 1-12], (8) 
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Fig. 2. Ratio of relaxation times z, (14), and z', (21), vs. control 
parameter a. (solid line) n = 2 ,  (dashed) n = 3 ,  (dashed-dotted) n = 4 ,  
(dotted) n = 10 

This work has been supported by a grant  from the National Science 
Foundation.  The author  is pleased to acknowledge also Prof. R.A. 
Marcus for his support.  

Appendix 

For the case n--1  the matrix element in (14) is given 
analytically by the integral expression [6] 

- <q~ [ L *  (~o)]- ~ q~> 

=2 ; expEU(x)]l(x)dx/ ; expE-U(x)]dx, 
0 0 

(A 1) 

where I (x) is 

oo d y 2 ,  
I (x) = ! y exp [ - -  U (y)] (A2) 

with the potential U(x) given by (11). In Part I it 
was demonstrated that the resulting mean relaxation 
time is numerically very close to the inverse of the 
lowest nonzero eigenvalue of the Fokker-Planck op- 
erator which was determined numerically by Dekker 
and van Kampen [8]. For a zero value of the control 
parameter a the integrals in (A1) and (A2) can be 
evaluated analytically (see Part I) and give for the 
linewidth factor c~ the result 

1 {F(3/4)) 2 

/2 + l /~\" 
(A3) 



For other values of a (A 1) and (A2) have to be evalu- 
ated numerically [-15]. However, as it was demon- 
strated in Part I, for values of a > 2 the approximation 

1 a exp(_a2/4)  (@2), (A4) ~K ~ ~/~ 

based on the Kramers rate for barrier crossing [3, 
4], is a very good numerical description of the line- 
with factor. Note that ( ( o 2 ) ~ a  holds in this regime 
(which is also true asymptotically for all values of 
n). Ziegler and Homer's approximation, (8), fails to 
describe correctly the slowing down due to the barrier 
crossing processes. Their leading order contribution 
for large values of a is 

5 5 (A5) ~zu~(~o2) -2~2a  2, 

and does not give the correct exponential slowing 
down, see (A4). This failure of ~zn for n = 1 is to be 
expected, since (8) was based on an 1/n expansion, 
and for n = 1 the character of the slow fluctuations 
is qualitatively different from n > 1. 
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